XRF熒光光譜儀制樣方法的原理和依據
樣品處理是整個分析檢測過程的重要組成部分。其目的是利用各種化學方法將測試元素以離子的形式從固(液)態樣品中定量轉移到測試溶液中。選擇合理的樣品分解方法可以大大簡化分析程序,大大提高分析方法的適應性和準確性。
設計樣品處理的原則是:
①保證樣品中所有被測元素都定量轉移到試液中,即樣品必須*分解;
② 避免在樣品處理過程中引入干擾元素,同時有助于去除干擾元素;
③分解方法應盡可能簡單、易操作、經濟、快速、安全,盡量減少對環境的污染;
④ 便于批量處理樣品。
要設計出滿足這些條件的樣品處理方法,您必須深入了解:
a) 被測元素及其化合物的理化性質;
b) 樣品中被測元素的含量范圍和出現形式;
c) 樣品基體的組成和性質;
d) 使用的最終測試方法和技術。
以國內外測定As、Se、Hg所用樣品的各種處理方法為例
對于國內外各種樣品中As、Se、Hg的測定,所采用的樣品處理方法大致分為三類:
1) 濕酸/堿分解;
2)密閉系統燃燒法(氧彈燃燒法);
3)燒結(半熔)法。
在煤中微量元素的定性和定量檢測過程中,樣品前處理往往比檢測技術本身更為重要。特別是對于各種原子光譜技術,一般需要進行液體進樣或液體進樣,以達到高精度。為了保證檢測的準確性,在充分溶解成分復雜的煤樣的同時,要避免被測元素的揮發性元素或化合物形式的損失。目前,國內外有以下幾種方法:
(1)直接溶解在密封的坩堝中。
該方法是在密閉容器中用混酸直接分解樣品,在微波爐中加熱消解樣品。具有進樣量小、溶解效率高、操作簡單、安全、易控制、避免揮發等優點;但是直接分解法不可避免地存在分解不*的缺點。該方法常用于檢測燃燒后煤灰或煤提取物樣品中的微量元素。
(2)低溫灰化法。
樣品采用等離子技術在 150°C 左右灰化,然后在聚四氟乙烯容器中用混酸分解。該方法是目前*的較好的預處理技術,但也存在設備運行成本高、耗時長等缺點。
濕酸分解
對于地質樣品的測定,常使用HNO3-HF-HClO4系統進行酸溶。用這種方法分解樣品時,如果加熱強度稍高,蒸發過干,樣品中的部分硒會因揮發而流失。原因可能是樣品酸分解產生的Se(ClO4)2可以分解為HCl和SeO2,這兩種化合物可以反應生成SeCl2,可以在較低溫度下升華。據了解,樣品在加工過程中會蒸發至干,樣品中的硒會損失40%左右。因此,用這種方法分解樣品時,必須小心控制加熱溫度和時間,蒸1~2mL透明溶液時應停止加熱。還有利用HNO3-H2SO4體系酸溶解和HNO3-HClO4體系分解。濕法分解操作程序復雜,酸霧揮發到大氣中,不利于環保。另外,對于煤,由于煤中含有大量有機物,酸分解不方便。
氧彈燃燒
該方法是將煤樣置于充滿高壓氧的不銹鋼筒中,用電點燃煤樣。煤中的有機物得到充分燃燒,無機礦物也被氧化分解。煤中的硒元素被轉化為氧化物。它溶解在吸收液(水或
稀堿)以氣態形式存在于墨盒中。國外一些實驗室采用這種方法測定煤中的硒。優點是樣品處理不引入除氧氣外的其他試劑,減少了引入干擾元素的機會。缺點是高灰分煤可能分解不*(未*燃燒),導致分析結果偏低;操作較麻煩,樣品處理效率低;不利于樣品的批量分解。
燒結(半熔)法
該方法是將與試樣混合均勻,加熱燃燒,使煤中的As和Se氧化成氧化物,再與Na2CO3和MgO反應生成鹽和硒酸鹽。然后用HCl溶解燒成物,將As和Se以離子的形式轉移到溶液中。以煤為例,反應方程式為:
這種方法的優點是操作簡單,易于批量處理和分解樣品。只要正確控制燃燒條件,就可以對被測元素進行定量轉化??紤]到目前煤中其他元素的分析標準中,采用半熔體分解煤樣的方法很多,分析人員容易接受,工作效率高;國家標準和美國標準也采用半熔融法處理樣品。本實驗通過對各種處理方法的比較,采用半熔法對樣品進行處理。
為了將被測元素從燃燒后的樣品中轉移到溶液中,燃燒后的物質必須用合適的酸溶解。為此,需要對酸的種類和加酸方法進行實驗。
酸的種類
使用不同的酸處理樣品對結果有影響,因此本實驗考察了 HCl、H2SO4 和 HNO3 在燒傷治療中的溶解情況及其對測定的影響。
H2SO4:測試發現用H2SO4溶解燒焦會引起CaSO4沉淀。此外,H2SO4 中含有高 As 和 Se,導致空白過高。如果提前去除,會增加實驗工作量。因此,不宜選用 H2SO4 作為溶解酸。 .
HNO3:測試發現,當HNO3溶解樣品時,其原子吸收信號低于HCl介質。原因可能是HNO3起氧化劑作用,與樣品中的還原性物質反應生成亞硝酸,而NO2-對氫化硒的生成有抑制作用。國外一些實驗室采用HNO3作為測定氫化硒發生原子吸收的介質,以降低靈敏度為代價,換取更好的穩定性。
HCl:用HCl溶解燒焦是國內外廣泛使用的方法。大多數氯化物是易溶鹽。 HCl 具有還原性。它是一種還原劑,可將 Se6+ 還原為 Se4+。 HCl中As、Se含量少,試劑空白低,有利于測定。該方法使用 HCl 來溶解燃燒的材料。
ilute alkali) in the cartridge in a gaseous form. Some foreign laboratories use this method to measure Se in coal. The advantage is that the sample processing does not introduce other reagents except oxygen, which reduces the chance of introducing interfering elements. The disadvantage is that the high-ash coal may be incompletely decomposed (not completely burned), which can lead to low analysis results; the operation is more troublesome, and the sample processing efficiency is low; it is not conducive to batch decomposition of samples.
Sintering (semi-melting) method
This method uses Aldrin and the sample to mix uniformly, heat and burn, so that the As and Se in the coal are oxidized to oxides, and then react with Na2CO3 and MgO to form arsenate and selenate. Then dissolve the burned material with HCl, and transfer As and Se into the solution in the form of ions. Taking coal as an example, the reaction equation is:
The advantage of this method is that it is easy to operate and easy to process and decompose samples in batches. As long as the burning conditions are correctly controlled, the measured elements can be quantitatively transformed. Considering that in the current analysis standards for other elements in coal, there are many methods that use aldrin semi-melt to decompose coal samples, which are easy for analysts to accept and have high work efficiency; national standards and American standards also use aldrin semi-melt method for processing sample. Through the comparison of various treatment methods, this experiment uses the semi-melting method to treat the samples.
In order to transfer the measured element from the burned sample into the solution, the burned substance must be dissolved with a suitable acid. To this end, experiments should be conducted on the type of acid and the method of adding acid.
Types of acid
The use of different acids to process the samples has an impact on the results, so the experiment investigated the dissolution of HCl, H2SO4 and HNO3 in the treatment of burns and their influence on the determination.
H2SO4: The test found that the use of H2SO4 to dissolve the burnt will cause CaSO4 precipitation. In addition, H2SO4 contains high As and Se, which causes the blank to be too high. If it is removed in advance, it will increase the experimental workload. Therefore, it is not suitable to choose H2SO4 as the dissolving acid. .
HNO3: The test found that when HNO3 dissolves the sample, the atomic absorption signal is lower than that of the HCl medium. The reason may be that HNO3 acts as an oxidant and reacts with the reducing substances in the sample to form nitrous acid, and NO2- has an inhibitory effect on the formation of Se hydride. Some foreign laboratories use HNO3 as the medium for the determination of Se hydride generation atomic absorption, at the cost of reduced sensitivity, in exchange for better stability.
HCl: The use of HCl to dissolve the burnt is a widely used method at home and abroad. Most of the chlorides are easily soluble salts. HCl has reductive properties. It is a reducing agent that reduces Se6+ to Se4+. The content of As and Se in HCl is small, and the reagent blank is low, which is beneficial for the determination. This method uses HCl to dissolve the burnt material.
ESI xrf analyzer